'algorithmic' Search Results
Use of Virtual Manipulatives in Addition of Fractions Among Year Four Pupils
conceptual understanding of adding fractions fractions quasi-experimental virtual manipulative year 4 pupils...
One of the challenging concepts that many primary school pupils deal with is adding fractions. However, the problem of adding fractions in the classroom might be resolved by employing virtual manipulatives. This study aimed to compare the use of virtual manipulatives and conventional lecture-based methods in two groups of Year 4 pupils to examine the effects of understanding the addition of fractions. Sixty-four pupils participated in this study. This study occurred throughout a six-week time frame in a primary school in Temerloh, Malaysia. A quasi-experimental non-equivalent pre-post test was implemented to compare the effects of the control and experimental groups. The first finding showed that the experimental group's conceptual understanding of adding fractions was significantly better after using virtual manipulatives during the intervention, t (62) = 11.682, p<0.005. Cohen's D demonstrated the effect size for comparison (d=2.06), showing a significant effect. The second finding revealed that the conceptual understanding of adding fractions was significantly better after the intervention with virtual manipulatives when controlling the pre-test score, F (1, 61) = 9.475, p < .001, η2 = 0.134. This study showed that pupils in the experimental group improved their conceptual understanding of adding fractions.
0
First Principle Approach and Students’ Determination of Limiting Reagents in Chemical Stoichiometry
algorithmic conceptual first principle approach limiting reagent stoichiometry...
The study investigated the impact of the first principle approach (FPA) on students’ performance in determining limiting reagents in chemical stoichiometry. A quasi-experimental design, involving 120 science students from two colleges of education in Ghana, was adopted. Sixty (60) students each were randomly assigned to the experimental group (EG), which was taught using FPA, and the control group (CG), which followed traditional teaching approach (TTA). Data on students’ entry knowledge (EK) and their performance on algorithmic problems (AP) and conceptual problems (CP) were collected and analyzed using descriptive and inferential statistics. The mean scores for EK were moderate for both groups (EG: 66.00%; CG: 68.30%). After treatments, there was no statistically significant difference in the groups’ performance on AP. However, the EG significantly outperformed the CG on CP, indicating that FPA enhanced students’ conceptual understanding of limiting reagents. The findings suggest that FPA is an effective teaching strategy for fostering deeper conceptual understanding and problem-solving skills in stoichiometry. This study highlights the importance of incorporating FPA into chemistry education to improve students’ ability to determine limiting reagents.
0